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PLASTIC CONSTANTS OF FRACTURE

UDC 539.3A. I. Khromov, A. A. Bukhan’ko,

O. V. Kozlova, and S. L. Stepanov

Based on the theory of an ideal rigid-plastic body, an approach is formulated for determining fracture
constants on the basis of standard mechanical tests on uniaxial extension of plane and cylindrical sam-
ples. Instead of the experimentally determined characteristics of fracture of materials (dimensionless
elongation and constriction of the sample during its fracture), two invariant tensor characteristics
of the degree of sample deformation are introduced, which correspond to the moment of origination
of a macrocrack and critical strain at the crack tip determining the process of crack propagation.

Key words: deformation, plasticity, fracture.

Introduction. Important problems of the theory of ideal rigid-plastic bodies are the uncertainty of the
position and type of the plastic region and the nonuniqueness of the field of displacement velocities responsible for
changes in the body geometry [1]. For practical application of theoretical solutions, one needs criteria for choosing
a preferable instantaneous field of displacement velocities and criteria determining the time evolution of the velocity
field (changes in the plastic region). Such criteria have not been formulated previously in the theory of an ideal
rigid-plastic body.

The criteria for choosing a preferable plastic flow can be related to the specific features of the formulation of
the extreme principles of nonequilibrium thermodynamics on discontinuities of the field of displacement velocities.

The governing principle in constructing the plasticity theory is the principle of the maximum dissipation
rate of mechanical work (Mises’ maximum principle, one of the extreme principles), which is related to the principle
proposed by Onsager [1]. Mises’ principle is usually formulated in terms of the powers of dissipation of mechanical
work. From Mises’ principle, there follows the associated law of the flow, the theorem of uniqueness for the stress
field, and the possibility of existence of discontinuities in the field of displacement velocities. On the discontinuities
of the field of displacement velocities, however, Mises’ principle is not satisfied, i.e., the specific power of energy
dissipation cannot be determined, as the components of the strain-rate tensor turn to infinity or are not determined.
Therefore, the extreme principles of thermodynamics imposing constraints on dissipative properties of materials
should be formulated with allowance for the specific features of the fields of displacement velocities. In the present
paper, we propose to relate these principles to strains in material particles and specific dissipation of energy, i.e.,
actually, to use empirical generalization of the extreme principles of nonequilibrium thermodynamics formulated in
[2] as the principle of the minimum energy dissipation.

Determining Strain Fields. As a measure of strain, we use the Almansi tensor of finite strains E, which
is determined via the distortion tensor A as

Eij = (δij −AkiAkj)/2, Aij = x0
j,i, i, j = 1, 2, 3. (1)

Here δij is the Kronecker symbol and x0
i and xi are the Lagrangian and Eulerian coordinates of the particle,

respectively. The changes in these tensors along the particle trajectory are described by the equations (see [3])

Institute of Machine Engineering and Metallurgy, Far East Division, Russian Academy of Sciences,
Komsomol’sk-on-Amur 681005; khromov@imim.ru. Translated from Prikladnaya Mekhanika i Tekhnicheskaya
Fizika, Vol. 47, No. 2, pp. 147–155, March–April, 2006. Original article submitted February 11, 2005; revision
submitted July 5, 2005.

274 0021-8944/06/4702-0274 c© 2006 Springer Science + Business Media, Inc.



d

dt
A+W ∗A = 0,

dE

dt
+ EW +W ∗E = ε, (2)

where d/dt = ∂/∂t+ Vk ∂/∂xk, Wik = Vi,k, and W ∗
ki = Vk,i.

The choice of the Almansi strain tensor as a measure of strain is not the only possible one, because equations
of the type (2) can be also obtained for other strain tensors (see [3]).

The field of displacement velocities can have some singularities (discontinuity surfaces Vi, center of the
fan of characteristics). Therefore, strain accumulation occurs under two conditions: 1) in a continuous field of
velocities Vi in accordance with Eqs. (2); 2) when the material particle crosses the singularities of the field Vi at
which the components εij can turn to infinity.

The change in strains caused by the material particle crossing the singularities of the velocity field Vi was
considered in [4–7]. Based on the theory of discontinuities proposed by Hadamard and Thomas [8], the changes in
distortion components on the surfaces of discontinuities of the field of displacement velocities are determined by the
expressions

[x0
i,j ] =

[Vτ ]
G+ Vν

τiνj , x0+
i,j = δij +

[Vτ ]
G+ Vν

τiνj (3)

under the assumption that the material has not been deformed before the discontinuity surface is crossed (x0
i,j = δij).

Here [Vτ ] and Vν are the discontinuity of the tangential component and the normal component of the displacement
velocity on the discontinuity surface, G is the normal velocity of propagation of the discontinuity surface, τi is the
unit vector of the tangential line to the discontinuity surface, which coincides with the vector of the discontinuity
of displacement velocities, and νi is the unit vector normal to the discontinuity surface.

Let us clear up the physical essence of the quantity W = [Vτ ]/(G+Vν). The expression [Vτ ]k dS dt describes
the elementary work of shear forces on the discontinuity surface during the time dt, where dS is the element of the
discontinuity-surface area and k is the tangential component of stresses on the discontinuity surface (or the yield
point for an ideal rigid-plastic body). The expression (G + Vν) dS dt describes the volume of the material passing
through the surface element dS during the time dt. Then, the absolute value of the quantity

H =
[Vτ ]

G+ Vν
k (4)

has the physical meaning of volume density dissipation of energy acquired by a material particle crossing the surface
of discontinuity of displacement velocities, W = H/k.

It follows from Eqs. (1), (3), and (4) that the principal invariants of the tensor Eij are calculated (for
x0

i,j = δij) via the quantity W by the formulas

(I1)E =
1
2

(E11 + E22) = −W
2

4
, (I2)E = (E11 − E22)2 + 4E2

12 =
W 2

4
(W 2 + 4), (I3)E = 0,

E1 =
W 2

4

(√
1 +

4
W̄ 2

− 1
)
, E2 = −W

2

4

(√
1 +

4
W 2

+ 1
)
, E3 = 0.

(5)

The relations obtained significantly depend on the motion of singularities of the velocity field with respect to
material particles. All the parameters mentioned can be determined only by solving the problem with allowance
for changes in the body geometry.

Under conditions of plane strain, owing to incompressibility of an ideal rigid-plastic body, only one invariant
of the tensor Eij is independent (e.g., E1, which is the algebraically highest principal value) and can be used as a
characteristic of the particle strain. The parameter E1 is a monotonic function of W , and the quantity W can also
characterize the magnitude of the strain of the particle crossing the line of discontinuity of displacement velocities.

If the material was deformed before crossing the discontinuity and the distortion-tensor components had the
values x0−

i,j , the distortion-tensor components behind the discontinuity have the values

x0+
i,j = (δik +Wτiνk)x0−

k,j . (6)

Criterion of Choosing a Preferable Plastic Flow. Let us formulate the following criterion.
1. The plastic flow is developed so that the maximum strain E1 in the plastic region has the minimum value:

inf
dΩ

sup
Ω
E1
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(Ω are possible plastic regions for the full solutions of the problem and dΩ are possible changes in the plastic region
due to the plastic flow determining the motion of its singularities at a given time).

Let us reformulate criterion 1 with allowance for Eq. (5).
2. The plastic flow is developed so that the maximum specific energy of dissipation in the plastic region has

the minimum value:
inf
dΩ

sup
Ω
W.

Criteria 1 and 2 can be considered as one of the mathematical formulations of the local principle of the
minimum energy dissipation.

Deformation of a Plane Sample. The following solutions are known for the problem of uniaxial extension
of a plane sample: with a uniform strain field in the sample (Fig. 1a), with a discontinuous field of displacement
velocities (Onat–Prager solution [9]; Fig. 1b), and possible formation of a double neck in a rather long sample
(Fig. 1c). The hatched regions in Figs. 1, 3, and 4 correspond to regions of a deformed material.

In the case of a uniform field of displacement velocities, integration of Eqs. (4) yields the relations [10]

E1 =
2δ + δ2

2(δ + 1)2
,

P

4ka0
=

1
δ + 1

, (7)

where δ = V t/l0 is the dimensionless elongation of the strip,a0 and l0 are the initial width and length of the strip,
respectively, P is the force necessary for sample deformation, and k is the yield point.

In the case of a discontinuous field of displacement velocities (Onat–Prager solution), we have

E1 = W 2
(√

1 + 4/W̄ 2 − 1
)
, W = [Vτ ]/G+ Vν ,

[Vτ ] =
√

2V, Vν =
V√
2
, G = 0,

P

4ka0
= 1 − V

a0
t.

Figure 2 shows the basic mechanical quantities characterizing the process of sample deformation [the first
principal value of the Almansi strain tensorE1 and the force P/(4ka0) necessary for sample deformation] as functions
of the dimensionless elongation. These dependences show a significant difference in deformation processes: the strain
in a continuous uniform field of displacement velocities increases with a finite velocity, uniformly over the entire
sample; the strain in a discontinuous field changes in a jumplike manner by a finite value and is higher than the
strain in a uniform field; in the latter case, only an insignificant part of the sample is subjected to strains. The
work necessary for sample deformation in a uniform field of velocities is much higher than the work necessary for
its deformation in a discontinuous field of velocities. Similar dependences are obtained in the case of axisymmetric
deformation [7].

According to criteria 1 and 2, the process of sample deformation in a uniform field of displacement velocities
is preferable, which is confirmed experimentally at the initial stage of deformation of plane and cylindrical samples
up to the moment when a neck is formed [3].

Fracture of Ideal Rigid-Plastic Bodies. The existence of a preferable plastic flow allows us to formulate
an approach to the description of fracture processes on the basis of a model of an ideal rigid-plastic body.

The strain field in the vicinity of the crack tip in the general case is nonuniform, and the strain tensor Eij

can be considered as a function of the coordinates ϕ and ρ of a polar coordinate system with the origin at the crack
tip. Several lines of discontinuity of the strain tensor can approach the crack tip, i.e., the tensor components can be
discontinuous in terms of the argument ϕ. Material fracture can be naturally associated with the tensor of strains
accumulated during the entire history of material deformation. We can use the following simple model of fracture
of an ideal rigid-plastic body.

1′. Fracture of the material begins when the maximum strain at the crack tip (E1) reaches a critical value
sup

ϕ
E1 � E∗. The velocity of motion of the crack tip is determined by the relation E1 = E∗.

Condition 1′ can be reformulated as follows.
2 ′. Fracture of the material begins when the accumulated specific dissipation of energy at the crack tip

reaches a critical value sup
ϕ
W � W∗. Then, the velocity of motion of the crack tip is determined by the relation

W = W∗.
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Fig. 1. Possible full solutions of the problem with uniaxial extension of a plane sample: plastic flow
with a uniform continuous field of displacement velocities (a); plastic flow with a discontinuous field
of displacement velocities: Onat–Prager solution [9] (b) and solution in the case of formation of a
double neck predicted by Onat and Prager (c).
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Fig. 2. The first principal value of the Almansi strain tensor E1 (a) and the force P/(4ka0) necessary
for sample deformation (b) versus dimensionless elongation: plastic flow with a uniform continuous
field of displacement velocities (1); plastic flow with a discontinuous field of displacement velocities
(Onat–Prager solution [9]) (2); plastic flow with a discontinuous field of displacement velocities with
a double neck predicted by Onat and Prager (3).
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The condition of choosing the direction of crack development with allowance for nonuniformity of the strain
field in the vicinity of the crack tip can be formulated as follows: the plastic flow during the fracture is developed
so that the increment of the work necessary for body deformation has the maximum value (δA = sup

ϕ
δA).

The process of crack propagation in plane and cylindrical samples was considered in detail in [6, 7, 10]. The
corresponding solutions, which are extensions of the Onat–Prager solution, are plotted in Fig. 3. Such a character
of the plastic flow yields an adequate description of the final stage of deformation of cylindrical samples [7] with
formation of a neck, which is supported by experimental data.

Full Scheme of Deformation of a Plane Sample. At the first stage of sample extension, uniform
deformation of the sample occurs at certain strains until a small-size macrocrack originates (Fig. 4a). After that,
uniform deformation of the sample becomes impossible, and the plastic flow is described on the basis of an extension
of the Onat–Prager solution (Fig. 4b). Macrocrack development up to sample separation into two fragments occurs.
The basic sizes of the sample characterizing the process of its deformation are a0, l0, a1, l1, a2, and l2, which are
the initial, intermediate, and final lengths and widths of the sample.

Determination of Fracture Constants. One of the basic experiments on determining the mechanical
properties of materials is an experiment on extension of plane and cylindrical samples. The basic characteristic
of fracture in this experiment is the dimensionless elongation δ = (l2 − l0)/l0 and the dimensionless constriction
ψ = (F0 − F2)/F0 of the sample during its fracture (F0 and F2 are the initial and final cross-sectional areas of the
sample, respectively). For most materials, ψ < 1 and F2 > 0 and the quantity F2 can be considered as the area of
the crack being formed.

We introduce two material constants: E∗∗, which is the value of the Almansi strain tensor E1 corresponding
to the end of the first (uniform) stage of sample deformation and determining the moment of origination of the
macrocrack and the beginning of formation of a neck, and E∗, which is the value of E1 at the tip of the macrocrack,
determining the velocity of crack propagation.

The condition of incompressibility yields

l1a1 = l0a0. (8)

At the first stage, the ends of the strip and the rigid regions MON and M ′ON ′ (see Fig. 3) move with
identical absolute values of velocity V ; hence, we have

a1 − a2 = l1 − l2. (9)

From Eqs. (8) and (9), we can find l1 and a1:

l1 = [A+B]/2, a1 = [A−B]/2,

A = a0(1 − ψ) + l0(δ + 1), B =
√
a2
0(1 − ψ)2 + 2a0l0(δ − ψ − ψδ − 1) + l20(δ + 1)2.

The first principal value of the Almansi strain tensor E∗∗ and the specific dissipation of energy corresponding to
the end of the first stage of deformation are determined by expressions (7):

E∗∗ = E1 = (2δ1 + δ21)/(2(δ1 + 1)2), W∗1 = 2 ln (1 + δ1), δ1 = (l1 − l0)/l0.

At the second stage of deformation (see Fig. 4b), the velocity of crack propagation dS/dt is determined by
the velocity of propagation of the discontinuity line G. At a constant velocity of extension V , these quantities are
related as

dS

dt
=

√
2G,

dS

dt
= V

a2

a1 − a2
= V

1 − ψ2

ψ2
, ψ2 =

a1 − a2

a1
.

Hence, we have

G =
1√
2
dS

dt
=

V (1 − ψ2)√
2 (a1/a0 − (1 − ψ2))

.

The volume density of energy dissipation at the line of discontinuity of displacement velocities is calculated
by the formula W∗2 = 2ψ2 [10].
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Fig. 3. Generalized Onat–Prager solution with a crack inside the sample.
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Fig. 4. Full scheme of deformation of a plane sample up to its fracture: in a uniform field of
displacement velocities (a) and in a discontinuous field of displacement velocities with a propagating
crack (b).
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TABLE 1
Plastic Constants of Fracture

Material δ, % [11] ψ, % [11] W∗ E∗ E∗∗

Aluminum alloys:

AD0 (sheet) 35 80 1.6 0.384 0.168

AK8 (section) 7 15 0.3 0.129 0.046

AK8 (forging) 10 25 0.5 0.195 0.056

AD31 (section quenched
and artificially aged) 17 70 1.4 0.364 0.035

AMG6 (plate, cold-worked,
18% in the longitudinal direction) 10 22 0.44 0.177 0.062

VD17 (strip pressed,
quenched, and artificially
aged, 60 mm) 10 19 0.38 0.157 0.068

AD33 (section pressed,
quenched, and artificially aged) 12 30 0.6 0.223 0.066

Titanium allows:

VT3-1 (forging) 14–20 45–60 0.9–1.2 0.291–0.340 0.056–0.085

VT6 (forging) 10–13 35–60 0.7–1.2 0.248–0.340 0.035–0.012

VT9 (forging) 8–14 25–45 0.5–0.9 0.195–0.291 0.035–0.056

VT14 (forging) 10–15 35–60 0.7–1.2 0.248–0.340 0.035–0.035

The components of the distortion tensor and the Almansi tensor are related by Eqs. (1) and the condition
of incompressibility

A2 + C2 = 1 − 2E11, B2 +D2 = 1 − 2E22,

AB + CD = −2E12, AD −BC = 1,

where A = ∂x0
1/∂x1, B = ∂x0

1/∂x2, C = ∂x0
2/∂x1, and D = ∂x0

2/∂x2.
At the first stage, deformation is simple (the first principal directions of the Almansi and strain-rate tensors

coincide with each other and with the x2 axis); therefore, we have

B = 0, C = 0, E12 = 0, E11 = E1, E22 = E2,

A =
√

1 − 2E1 , D =
√

1 − 2E2 .

From here, according to Eq. (6), we obtain

∂x0+

1

∂x1
= A,

∂x0+

1

∂x2
= W2D,

∂x0+

2

∂x1
= 0,

∂x0+

2

∂x2
= D.

The quantity E∗ is determined by the expression

E∗ = (1/4)(1 −A2 −W 2
2D

2 −D2) + (1/2)
√

(A2 +W 2
2D

2 −D2)2 + 4A2D2 .

The total specific volume dissipation for particles deformed at the first and second stages is determined by the
formula W∗ = W∗1 +W∗2.

The fracture constants for some structural materials are summarized in Table 1. The invariant tensor
deformation and energy characteristics of fracture of structural materials allow correct application of experimentally
determined quantities in calculating complicated structures and their elements by numerical methods.
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